前言 精索靜脈曲張(varicocele)是導致男性不孕症的最常見原因,一般族群其盛行率小於百分之二十,但在男性不孕症患者族群中,其盛行率則高達百分之四十。2007年二篇大型的系統性文獻回顧(meta-analysis)顯示,觸診可及的精索靜脈曲張及異常精液分析(semen analysis)患者身上,結紮手術(varicocelectomy)能顯著地改善不孕症男性的精子數量與活動度,並增加自然懷孕的可能。1, 2針對只需要單一精子的細胞質內精子注射(intracytoplasmic sperm injection),結紮手術同樣也能提高其成功率。3這表示,精索靜脈曲張影響的不止是精子的型態與功能,更會造成精液分析檢測不出的DNA傷害。關於精索靜脈曲張干擾精子形成(spermatogenesis)的致病機轉有幾個假說,包括內分泌與睪丸旁分泌(paracrine)失調、熱壓力(heat stress)、缺氧(hypoxia)、氧化壓力(oxidative stress)、毒性物質的堆積,以及基因的干擾等,導致生殖細胞(germ cell)的增生減少與凋亡(apoptosis);然而,單一因素並無法解釋為何造精功能失調,往往需要結合數個因素,才會導致男性不孕症的發生。本文就現今文獻中精索靜脈曲張導致男性不孕症的致病機轉,做一簡要的回顧。
熱壓力 分裂快速的細胞會比一般細胞更容易受到熱壓力的影響。精子形成的理想溫度是攝氏三十六度,約比中心體溫(core temperature)低一到二度;精索靜脈曲張會使睪丸平均溫度上升二點六度;結紮手術則有助於下降零點五度左右。4睪丸溫度過高,會使像是DNA聚合酶(DNA polymerase)等對溫度敏感的蛋白質變性失能,導致DNA的雙股螺旋結構裂解,使精子形成的過程受阻。5熱壓力也與睪丸內的氧化壓力密切相關:藉由偵測p85片斷(一個細胞凋亡的早期指標),可發現隨著睪丸溫度增加,生殖細胞的凋亡也愈多。6
組織缺氧 精索靜脈曲張會增加靜脈的靜水壓力(venous hydrostatic pressure),影響睪丸的動脈血流,進而造成睪丸缺氧。7組織缺氧時,缺氧誘發因子1(hypoxia induced factor 1,簡稱HIF1)增加,結合至血管內皮生長因子(vascular endothelial growth factor,簡稱VEGF)基因,促進血管新生以適應缺氧的環境;HIF1α和VEGF表現增加的情形,在精索靜脈曲張的動物模型或患者上都可以觀察到。7, 8組織學上也發現精索靜脈曲張的睪丸其微血管(microvessel)的密度較對照組來得高。9甚至,Gat等人發現左側精索靜脈曲張的不孕症患者,高達百分之八十六其右側睪丸在靜脈攝影(venography)上也有回流異常,且有HIF1表現增加的情形。10
氧化壓力 氧化壓力是精索靜脈曲張的致病機轉中,最常被討論及研究的。缺氧與熱壓力都會導致氧化壓力的堆積,使生殖細胞凋亡。睪丸內細胞的周轉(turnover)高,脂肪、蛋白質、碳水化合物、核酸等氧化或過氧化(peroxidation)產生的反應性氧化物(reactive oxygen species)與反應性氮化物(reactive nitrogen species)也較多;適度的氧化壓力可以維持細胞平衡,但過多的氧化壓力則可能使細胞內的DNA和蛋白質失能:像8-OHdG,一種DNA氧化後的產物,在精索靜脈曲張的睪丸中就顯著增加。11除了DNA和蛋白質之外,睪丸細胞的細胞膜富含多元不飽和脂肪酸(poly-unsaturated fatty acid),因此特別容易受到精索靜脈曲張的氧化壓力影響:像aldehyde 4-HNE是一種脂肪過氧化的終產物,便會進一步和DNA與蛋白質結合反應,導致訊息傳遞與細胞凋亡。12在精索靜脈曲張的動物實驗中,反應性氧化物和細胞凋亡調節蛋白質Bax(apoptosis regulator protein Bax)都有顯著的增加;在人類身上,由p53基因主導的細胞凋亡則會發生在初級精細胞(primary spermatocyte)。13氧化壓力也會增加白細胞介素1(interleukin-1,簡稱IL-1)在Leydig細胞、Sertoli細胞,以及精原細胞(spermatogonia)的表現,影響生殖細胞與未成熟的Leydig細胞的功能。14
有生育能力的男性,不論有無精索靜脈曲張,其睪丸容積和氧化壓力是相當的,15這表示除了過多的反應性氧化物製造,不孕的精索靜脈曲張患者的反應性氧化物清理系統也失調。抗氧化機轉像是SOD、GSR、GPX、GST、catalase,以及OH-1等酵素16,在精索靜脈曲張的患者上表現各異,例如重要的SOD會向下調節(downregulation);缺乏它,生殖細胞對於氧化壓力的敏感性會提高,使細胞凋亡。17基因的因素在此也參與其中,例如在GSTM1基因缺失(deletion)的精索靜脈曲張患者,其精子DNA內的8-OHdG會昇高,粒腺體DNA容易有缺失,精子的活動力也較差;18不同的GST基因型也可以用於預測結紮手術後的成果。19
一氧化氮 一般而言,低劑量的一氧化氮(nitric oxide,簡稱NO)能促進精子的獲能作用(capacitation),20而局部製造的一氧化氮則與調節睪丸血流有關。研究觀察到精索靜脈曲張患者的精索靜脈(spermatic vein)有過多的一氧化氮,21然而這樣的相關性是否對於精子形成有害仍未知。Santoro發現精索靜脈曲張的Leydig細胞中的誘發型一氧化氮合成酶(inducible nitric oxide synthase,簡稱iNOS)增加,惡化精子的形成22,這些合成酶產生的一氧化氮會擴散至內精索靜脈(internal spermatic vein),造成精索靜脈曲張23。但這也可能是為了應付組織缺氧的代償機制。
其他可能機轉 除此之外,精索靜脈曲張的睪丸常會有一些間質的變化,包括Leydig細胞的增加、細精管與間質血管壁的基底膜(basement membrane)增厚、管徑變窄,以及間質纖維組織沉積等。24雖然這些變化和精子功能的關係不明,但是這些變化愈多,結紮手術後的效果愈差。靜脈曲張患者其Sertoli細胞之間的E-cadherin和α-catenin減少,顯示精索靜脈曲張可能會破壞血液─睪丸屏障(blood-testis barrier)。25精索靜脈曲張的睪丸間質與固有層(lamina propia),以及細精管內的肥大細胞(mast cell)密度有增多的趨勢,這些肥大細胞所含的tryptase與chymase則可能是影響精子形成和睪丸纖維化的原因之一。26
其他可能的致病機轉包括了Notch訊息傳遞路徑(Notch signaling pathway),這是一個演化上相對原始的機轉,負責調節細胞的增生、分化,以及凋亡。在睪丸中,Notch1和精細胞(spermatid)的成熟有關,Notch2和精母細胞的增生和成熟有關,而Notch3則和Leydig細胞的功能有關;精索靜脈曲張愈嚴重,Notch1和Notch2的表現就愈減少。27另外二種主要作用在中樞神經系統的蛋白質─大腦海綿竇畸型蛋白(cerebral cavernous malformation protein,簡稱CCM)與一種大腦生長因子(brain growth factor)GDNFα,也被認為與精索靜脈曲張有關:在正常的睪丸中CCM2和CCM3分別位於減數分裂後的生殖細胞與圓精細胞(round spermatid)的細胞質中,在精索靜脈曲張的睪丸中都有表現增加的情形;GDNFα則是減少。28, 29這三個蛋白質在精索靜脈曲張的病理機轉所扮演的詳細角色仍不清楚,需要進一步研究。
結論 精索靜脈曲張的致病機轉仍有許多未解之處,而在現今人工生殖技術發達的年代,這些致病機轉與人工生殖成功率的關係也未知。往後的基礎與臨床研究不僅要進一步釐清精索靜脈曲張與精子形成的關係,更要致力改善人工生殖後的活產率。
參考文獻
- Agarwal A, Deepinder F, Cocuzza M, et al. Efficacy of varicocelectomy in improving semen parameters: new meta-analytical approach. Urology. 2007;70(3):532-8.
- Marmar JL, Agarwal A, Prabakaran S, et al. Reassessing the value of varicocelectomy as a treatment for male subfertility with a new meta-analysis. Fertility and sterility. 2007;88(3):639-48.
- Esteves SC, Oliveira FV, Bertolla RP. Clinical outcome of intracytoplasmic sperm injection in infertile men with treated and untreated clinical varicocele. The Journal of urology. 2010;184(4):1442-6.
- Yamaguchi M, Sakatoku J, Takihara H. The application of intrascrotal deep body temperature measurement for the noninvasive diagnosis of varicoceles. Fertility and sterility. 1989;52(2):295-301.
- Fujisawa M, Hayashi A, Okada H, Arakawa S, Kamidono S. Enzymes involved in DNA synthesis in the testes are regulated by temperature in vitro. European urology. 1997;31(2):237-42.
- Shiraishi K, Takihara H, Matsuyama H. Elevated scrotal temperature, but not varicocele grade, reflects testicular oxidative stress-mediated apoptosis. World journal of urology. 2010;28(3):359-64.
- Kilinc F, Kayaselcuk F, Aygun C, Guvel S, Egilmez T, Ozkardes H. Experimental varicocele induces hypoxia inducible factor-1alpha, vascular endothelial growth factor expression and angiogenesis in the rat testis. The Journal of urology. 2004;172(3):1188-91.
- Shiraishi K, Naito K. Involvement of vascular endothelial growth factor on spermatogenesis in testis with varicocele. Fertility and sterility. 2008;90(4):1313-6.
- Ebisch IM, Thomas CM, Wetzels AM, Willemsen WN, Sweep FC, Steegers-Theunissen RP. Review of the role of the plasminogen activator system and vascular endothelial growth factor in subfertility. Fertility and sterility. 2008;90(6):2340-50.
- Gat Y, Gornish M, Navon U, Chakraborty J, Bachar GN, Ben-Shlomo I. Right varicocele and hypoxia, crucial factors in male infertility: fluid mechanics analysis of the impaired testicular drainage system. Reproductive biomedicine online. 2006;13(4):510-5.
- Ishikawa T, Fujioka H, Ishimura T, Takenaka A, Fujisawa M. Increased testicular 8-hydroxy-2'-deoxyguanosine in patients with varicocele. BJU international. 2007;100(4):863-6.
- Shiraishi K, Naito K. Increased expression of Leydig cell haem oxygenase-1 preserves spermatogenesis in varicocele. Human reproduction. 2005;20(9):2608-13.
- Shiraishi K, Naito K. Effects of 4-hydroxy-2-nonenal, a marker of oxidative stress, on spermatogenesis and expression of p53 protein in male infertility. The Journal of urology. 2007;178(3 Pt 1):1012-7; discussion 7.
- Sahin Z, Celik-Ozenci C, Akkoyunlu G, et al. Increased expression of interleukin-1alpha and interleukin-1beta is associated with experimental varicocele. Fertility and sterility. 2006;85 Suppl 1:1265-75.
- Shiraishi K, Takihara H, Naito K. Testicular volume, scrotal temperature, and oxidative stress in fertile men with left varicocele. Fertility and sterility. 2009;91(4 Suppl):1388-91.
- Gu W, Hecht NB. Developmental expression of glutathione peroxidase, catalase, and manganese superoxide dismutase mRNAs during spermatogenesis in the mouse. Journal of andrology. 1996;17(3):256-62.
- Ishii T, Matsuki S, Iuchi Y, et al. Accelerated impairment of spermatogenic cells in SOD1-knockout mice under heat stress. Free radical research. 2005;39(7):697-705.
- Chen SS, Chang LS, Chen HW, Wei YH. Polymorphisms of glutathione S-transferase M1 and male infertility in Taiwanese patients with varicocele. Human reproduction. 2002;17(3):718-25.
- Okubo K, Nagahama K, Kamoto T, Okuno H, Ogawa O, Nishiyama H. GSTT1 and GSTM1 polymorphisms are associated with improvement in seminal findings after varicocelectomy. Fertility and sterility. 2005;83(5):1579-80.
- Zini A, De Lamirande E, Gagnon C. Low levels of nitric oxide promote human sperm capacitation in vitro. Journal of andrology. 1995;16(5):424-31.
- Ozbek E, Turkoz Y, Gokdeniz R, Davarci M, Ozugurlu F. Increased nitric oxide production in the spermatic vein of patients with varicocele. European urology. 2000;37(2):172-5.
- Santoro G, Romeo C, Impellizzeri P, et al. Nitric oxide synthase patterns in normal and varicocele testis in adolescents. BJU international. 2001;88(9):967-73.
- Shiraishi K, Matsuyama H, Takihara H. Pathophysiology of varicocele in male infertility in the era of assisted reproductive technology. International journal of urology : official journal of the Japanese Urological Association. 2012;19(6):538-50.
- Abdelrahim F, Mostafa A, Hamdy A, Mabrouk M, el-Kholy M, Hassan O. Testicular morphology and function in varicocele patients: pre-operative and post-operative histopathology. British journal of urology. 1993;72(5 Pt 1):643-7.
- Koksal IT, Ishak Y, Usta M, et al. Varicocele-induced testicular dysfunction may be associated with disruption of blood-testis barrier. Archives of andrology. 2007;53(1):43-8.
- Yamanaka K, Fujisawa M, Tanaka H, Okada H, Arakawa S, Kamidono S. Significance of human testicular mast cells and their subtypes in male infertility. Human reproduction. 2000;15(7):1543-7.
- Sahin Z, Bayram Z, Celik-Ozenci C, et al. Effect of experimental varicocele on the expressions of Notch 1, 2, and 3 in rat testes: an immunohistochemical study. Fertility and sterility. 2005;83(1):86-94.
- Tanriover G, Sati L, Tekcan M, Demir N, Gunel M, Celik-Ozenci C. Presence of the brain proteins cerebral cavernous malformation-2 and cerebral cavernous malformation-3 in rat testes and their potential role in experimental varicocele. Fertility and sterility. 2010;93(8):2716-22.
- Akkoyunlu G, Erdogru T, Seval Y, et al. Immunolocalization of glial cell-derived neurotrophic factor (GDNF) and its receptor GFR-alpha1 in varicocele-induced rat testis. Acta histochemica. 2007;109(2):130-7.
|